scTDC Python SDK

Release 1.4.0

Surface Concept GmbH

Nov 20, 2023

CONTENTS:

1 Introduction 1
1.1 SDKcontents i it e e e e e e 1
1.2 Prerequisites o L e e e e e e e e e e e 1
1.3 Python module dependencies 2
2 Examples Overview 3
2.1 TDCand DLD applications e 3
2.2 Cameraapplications e e e e 3
2.3 Integration with QtS (PyQt5) o e e e e e 4
24 Miscellaneous e e e e e e 4
3 API reference 5
3.1 classscTDCIb o o e e 5
32 classDevice e 12
33 classPipe L e 16
3.4 class buffered_data_callbacks_pipe L 18
3.5 classusercallbacks_pipe 20
3.6 classCamera e e e e e e e e 21
3.7 class CamFramePipe L e e 24
3.8 classCamBlobsPipe e 25
4 Indices and tables 27
Index 29

CHAPTER
ONE

INTRODUCTION

This Python SDK provides a Python 3 interface to the scTDC library. It has been tested with Python version 3.8.10.
The products supported by this SDK are delay-line detectors (DLDs), stand-alone time-digital converters (TDCs), and
ReconFlex™ cameras. In the current version, ReconFlex™ camera support does not cover reading of blob data.

1.1 SDK contents

This SDK comprises
1. the Python module scTDC contained in the file scTDC. py
2. code examples (files example_*.py)
3. this document

For running applications based on this SDK, you will also need files from the regular (C/C++) scTDC SDK and from
your demo software folder.

1.2 Prerequisites

The scTDC.py needs additional files, not included here, to work. At the point, where your Python code does import
scTDC, none of these files are checked at first, so this step should always succeed. There are two further stages where
your code may run into errors due to missing files:

* At the point where your code creates an scTDC11b object, either directly or by creating a Device object. During
this stage, the following libraries are required:

— scTDC1.d1l1
— pthreadvC2.d11
These libraries require that the Microsoft Visual C++ redistributable version 2015-2022 is installed, see
— https://learn.microsoft.com/en-us/cpp/windows/latest-supported- ve-redist
or these direct permalinks:
— https://aka.ms/vs/17/release/vc_redist.x86.exe (32 bit version)
— https://aka.ms/vs/17/release/vc_redist.x64.exe (64 bit version)
If these libraries cannot be loaded, an OSError exception is thrown.

* At the point where your code initializes the device via one of the respective functions (such as Device.
initialize):

https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist
https://aka.ms/vs/17/release/vc_redist.x86.exe
https://aka.ms/vs/17/release/vc_redist.x64.exe

scTDC Python SDK, Release 1.4.0

libraries related to the hardware interface (one of the following combinations)
* scDeviceClass60.dll, okFrontPanel.dll (for USB TDCs)
% scDeviceClass450.d11 (for Ethernet interface)

% scDeviceClass6010.d11, FTD3XX.d11 (for ReconFlex™ cameras)

if you have a ReconFlex™ camera product, the library para3.dll, (sometimes it must be renamed to
para30.dll)

the configuration file tdc_gpx3.ini

USB TDCs that came with a scDeviceClass60.dl1 require a firmware file with the *.bit file name
extension.

cal_i.tif, cal_xyt.txt, if any of these were present in the demo software folder shipped on USB
pendrive together with your product

Missing libraries from the above list result in an error code -12 (SC_TDC_ERR_DEVCLS_LD) returned by the
initialization function.

* We recommend to place all files mentioned in this section into one folder. The Python application can then use
os.chdir(...) to change the current working directory to this folder, then create the object to the interface
class of your choice (Device, Camera, or others), then initialize the device. Afterwards, the working directory
can be changed back to the original location.

1.2.1 Linux notes

If you have placed dependent libraries into a folder somewhere under your home directory, you need to point the system
linker to this folder using the LD_LIBRARY_PATH variable.

For example, if you have put the libraries into /home/user/abc, you can start your python application via:

LD_LIBRARY_PATH="/home/user/abc" python3 my_application.py

1.3 Python module dependencies

The scTDC Python module makes use of the following modules.
¢ numpy (tested with version 1.21.4)

The examples additionally require
e matplotlib (tested with version 3.1.2)

These dependencies can usually be installed as follows:

python -m pip install --user numpy
python -m pip install --user matplotlib

You may have to replace python by the full path to your Python interpreter executable on Windows, or by python3
on Linux. If you are using an Anaconda Python distribution, refer to the Anaconda documentation for installation of
packages, instead.

2 Chapter 1. Introduction

CHAPTER
TWO

EXAMPLES OVERVIEW

2.1 TDC and DLD applications

The following examples are related to processing of event data (in a list-of-events form):

¢ example_buffered_data_callbacks.py a very basic example, using the
BUFFERED_DATA_CALLBACKS pipe, which has been introduced in scTDC library version 1.3010.0
to enable better performance in python than the USER_CALLBACKS pipe.

» example_buffered_data_callbacks2.py computation of a histogram from the event data in python code
using numpy and on-screen visualization using matplotlib

o example_buffered_data_callbacks3.py much improved performance of the previous example
» example_buffered_data_callbacks4.py data export to a text file for DLD events
» example_buffered_data_callbacks5.py data export to a text file for TDC events
¢ example_user_callbacks_interface.py Notrecommended anymore.
The following examples demonstrate reading of histograms that are provided by the scTDC library

* example_3d_pipe.py A 3D histogram of DLD event count versus detector position X, y and time of DLD
event

e example_xy_xt_yt_pipes.py 2D histograms for DLD events

e example_tdc_histo_pipe.py 1D histograms for stand-alone TDCs

2.2 Camera applications

¢ example_camera.py
— setting of exposure parameters
— starting a multiple-frame measurement
— reading of image data and meta data
¢ example_camera_blobs.py
— setting parameters related to blob-mode

— reading of meta data and blob data

scTDC Python SDK, Release 1.4.0

2.3 Integration with Qt5 (PyQt5)

e example_pyqt5_tdc.py

2.4 Miscellaneous

¢ example_eom_callback.py using the (general) end-of-measurement notification

e example_statistics_pipe.py read the “statistics” to obtain the number of pulses registered in the individual
TDC channels and number of constructed DLD events (if applicable) during the last measurement. In case
of delay-line detector applications, this is useful for diagnosis and to monitor the load on the MCP.

4 Chapter 2. Examples Overview

CHAPTER
THREE

API REFERENCE

The scTDC1ib class provides a low-level wrapper of functions from the underlying scTDC library. A few of the
functions from this class may be interesting to the application, such as sc_tdc_config_get_library_version
for querying the library version, or querying certain device properties. Other than that, this class is merely used to
implement the higher-level interfaces which are recommended to be used primarily by the application developer:

3.1

the Device class for access to pre-computed histograms from DLD and TDC data and statistics data. The Device
class can create Pipe objects and return them to the application. For access to the data, methods from these Pipe
objects are used.

the Camera class in place of the Device class for camera applications.
the buffered_data_callbacks_pipe class for access to TDC or DLD events in a list-of-events form.

the usercallbacks_pipe class has been available for a longer time than the
buffered_data_callbacks_pipe class and it maps the default list-of-events interface of the C/C++
scTDC SDK. However, the application may run into performance problems with the usercallbacks_pipe
interface if TDC or DLD events are expected to be in the order of millions per second. The
buffered_data_callbacks_pipe can be tuned to require less Python lines of code to be executed per
second and therefore is able to handle higher event rates.

class scTDCIib

class scTDC.scTDClib (libfilepath=None)

low-level wrapper of the C interface in the dynamically loaded library scTDC

__init__(libfilepath=None)

loads the library scTDC (scTDC1.dll or libscTDC.so0) from hard disk and adds the correct signatures to the
library functions so they can be used from Python.

Parameters libfilepath (str) — optionally specify the full path including file name to the
shared library file, defaults to None

sc_tdc_init_inifile (inifile_path="tdc_gpx3.ini")
Initializes the hardware and loads the initial settings from the specified ini file.

Parameters inifile_path (str) - the name of or full path to the configuration file, defaults to
“tdc_gpx3.ini”

Returns Returns a non-negative device descriptor on success or a negative error code in case of
failure. The device descriptor is needed for all functions that involve the initialized device

Return type int

scTDC Python SDK, Release 1.4.0

sc_tdc_init_inifile_overrides (inifile_path="tdc_gpx3.ini', overrides=None)

Initializes the hardware and loads the initial settings from the specified ini file. Enables overriding of
parameters from the ini file without modification of the ini file on hard disk (the override entries reside in
memory and are evaluated by the scTDC library).

Parameters

e inifile_path (str) — the name of or full path to the configuration file, defaults to
“tdc_gpx3.ini”

e overrides (1ist)—alist of 3-tuples (section_name, parameter_name, parameter_value),
where the section_name is specified without square brackets ([]). Spelling of names is case
sensitive. defaults to [] (empty list)

Returns a non-negative device descriptor on success, or, a negative error code in case of failure.
The device descriptor is needed for all functions that involve the initialized device

Return type int

sc_get_err_msg(errcode)

Returns an error message to the given error code.
Parameters errcode (int) — a negative error code returned by one of the library functions
Returns the error message describing the reason of the error code
Return type str

sc_tdc_config_get_library_version()
Query the version of the scTDC library.

Returns a 3-tuple containing the version separated into major, minor and patch parts, e.g. version
1.3017.5 becomes (1, 3017, 5)

Return type tuple

sc_tdc_deinit2 (dev_desc)
Deinitialize the hardware.

Parameters dev_desc (int) — device descriptor as retrieved from sc_tdc_init_inifile or
sc_tdc_init_inifile_overrides

Returns 0 on success or negative error code
Return type int

sc_tdc_start_measure2 (dev_desc, exposure_ms)
Start a measurement (asynchronously/non-blocking)

Parameters
* dev_desc (int) — device descriptor as returned by one of the initialization functions
» exposure_ms (int) — The exposure time in milliseconds

Returns 0 on success or negative error code

Return type int

sc_tdc_interrupt2 (dev_desc)

Interrupts a measurement asynchronously (non-blocking). Asynchronously means, the function may return
before the device actually reaches idle state. sc_tdc_set_complete_callback2 may be used to be
notified when the device has stopped the measurement.

Parameters dev_desc (int) — device descriptor

6 Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

Returns 0 on success or negative error code
Return type int

sc_pipe_open2 (dev_desc, pipe_type, pipe_params)

Open a pipe for reading data from the device. The available pipe types with their corresponding
pipe_params types are

e TDC_HISTO : sc_pipe_tdc_histo_params_t

* DLD_IMAGE_XY : sc_pipe_dld_image_xyt_params_t
e DLD_TMAGE_XT : sc_pipe_dld_image_xyt_params_t
e DLD_IMAGE_YT : sc_pipe_dld_image_xyt_params_t
e DLD_IMAGE_3D : sc_pipe_dld_image_xyt_params_t
e DLD_SUM_HISTO : sc_pipe_dld_image_xyt_params_t
e STATISTICS : sc_pipe_statistics_params_t

e USER_CALLBACKS : sc_pipe_callback_params_t

e BUFFERED_DATA_CALLBACKS : sc_pipe_buf_callbacks_params_t
e PIPE_CAM_FRAMES : None (no configuration parameters)
e PIPE_CAM_BLOBS : None (no configuration parameters)

Parameters
* dev_desc (int) — device descriptor
e pipe_type (int) — one of the pipe type constants

* pipe_params (Any) — various types of structures depending on pipe_type. If a structure
is needed, it should be passed by value, not by pointer.

Returns a non-negative pipe handle on success or a negative error code

Return type int

sc_pipe_close2(dev_desc, pipe_handle)
Close a pipe.

Parameters

* dev_desc (int) — device descriptor

e pipe_handle (int) — the pipe handle as returned by sc_pipe_open2
Returns 0 on success or negative error code
Return type int

sc_pipe_read2 (dev_desc, pipe_handle, timeout)
Read from a pipe. The functions waits until either data is available or the timeout is reached.

Parameters
¢ dev_desc (int) — device descriptor
» pipe_handle (int) - pipe handle as returned by sc_pipe_open2
¢ timeout (int) — the timeout in milliseconds

Returns a tuple containing the return code and a ctypes.POINTER to the data buffer

. class scTDClib 7

scTDC Python SDK, Release 1.4.0

Return type tuple
sc_tdc_get_status2 (dev_desc)
Query whether the device is idle or in measurement.
Parameters dev_desc (int) — device descriptor
Returns O (idle) or 1 (exposure) or negative error code
Return type int

sc_tdc_get_statistics2(dev_desc)

This function is deprecated. Use the statistics pipe, instead. This function is kept for older scTDC library
versions.

sc_tdc_set_complete_callback2 (dev_desc, privptr, callback)

Sets a callback to be notified about completed measurements or other events regarding the transition from
measurement state to idle state.

Parameters
¢ dev_desc (int) — device descriptor

e privptr (ctypes.POINTER (void)) — a private pointer that is passed back into the call-
back

e callback (function) — the function to be called for notifications
Returns 0 on success or negative error code

Return type int

3.1.1 Pipe type constants

scTDC.TDC_HISTO = 0
pipe type, TDC time histogram for one TDC channel

scTDC.DLD_IMAGE_XY = 1

pipe type, image mapping the detector area

scTDC.DLD_IMAGE_XT = 2

pipe type, image mapping the detector x axis and the TDC time axis
scTDC.DLD_IMAGE_YT = 3

pipe type, image mapping the detector y axis and the TDC time axis
scTDC.DLD_IMAGE_3D = 4

pipe type, 3D matrix mapping the detector area the the TDC time axis

scTDC.DLD_SUM_HISTO = 5

pipe type, 1D histogram for DLDs, counts vs time axis

scTDC.STATISTICS = 6
pipe type, statistics data delivered at the end of measurements

scTDC.USER_CALLBACKS = 10
pipe type, TDC and DLD event data, slow in python

scTDC.BUFFERED_DATA_CALLBACKS = 12
pipe type, TDC and DLD event data, more efficient variant of USER_CALLBACKS

8 Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

scTDC.PIPE_CAM_FRAMES = 13

pipe type, provides camera frame raw image data and frame meta data

scTDC.PIPE_CAM_BLOBS = 14

pipe type, provides camera blob coordinates

3.1.2 Data types for type parameters:

class scTDC.sc3du_t

class sc3du_t(ctypes.Structure):
fields = [("x",ctypes.c_uint),

("y",ctypes.c_uint),
("time", ctypes.c_uint64)]

class scTDC.sc3d_t

class sc3d_t(ctypes.Structure):
fields = [("x",ctypes.c_int),

("y",ctypes.c_int),
("time", ctypes.c_int64)]

class scIDC.roi_t

class roi_t(ctypes.Structure):
fields = [("offset", sc3d_t),
("size", sc3du_t)]

class scTDC.sc_pipe_dld_image_xyt_params_t

class sc_pipe_dld_image_xyt_params_t(ctypes.Structure):

fields = [("depth", ctypes.c_int),
("channel", ctypes.c_int),
("modulo", ctypes.c_uint64),
("binning", sc3du_t),
("roi", roi_t),

("accumulation_ms", ctypes.c_uint),
("allocator_owner", ctypes.c_char_p),
("allocator_cb", ALLOCATORFUNQ)]

class scTDC.sc_pipe_tdc_histo_params_t

class sc_pipe_tdc_histo_params_t(ctypes.Structure):

fields = [("depth", ctypes.c_int),
("channel", ctypes.c_uint),
("modulo", ctypes.c_uint64),
("binning", ctypes.c_uint),
("offset", ctypes.c_uint64),
("size", ctypes.c_uint),

("accumulation_ms", ctypes.c_uint),
("allocator_owner", ctypes.c_char_p),
("allocator_cb", ALLOCATORFUNC)]

3.1. class scTDClib 9

scTDC Python SDK, Release 1.4.0

class scTDC.sc_pipe_statistics_params_t

class sc_pipe_statistics_params_t(ctypes.Structure):
fields = [("allocator_owner", ctypes.c_char_p),
("allocator_cb", ALLOCATORFUNC)]

class scTDC.sc_pipe_callbacks

class sc_pipe_callbacks(ctypes.Structure):

fields = [("priv", ctypes.POINTER(None)),
("start_of_measure", CB_STARTMEAS),
("end_of_measure", CB_ENDMEAS),
("millisecond_countup", CB_MILLISEQC),
("statistics", CB_STATISTICS),
("tdc_event", CB_TDCEVENT),
("dld_event", CB_DLDEVENT)]

if os.name == 'nt':
_FUNCTYPE = ctypes.WINFUNCTYPE

else:
_FUNCTYPE = ctypes.CFUNCTYPE
CB_STARTMEAS = _FUNCTYPE(None, ctypes.POINTER(None))
CB_ENDMEAS = CB_STARTMEAS
CB_MILLISEC = CB_STARTMEAS

CB_STATISTICS = _FUNCTYPE(None, ctypes.POINTER(None),
ctypes.POINTER(statistics_t))

CB_TDCEVENT = _FUNCTYPE (None, ctypes.POINTER(None),
ctypes.POINTER(tdc_event_t), ctypes.c_size_t)
CB_DLDEVENT = _FUNCTYPE (None, ctypes.POINTER(None),

ctypes.POINTER(dld_event_t), ctypes.c_size_t)

class scTDC.sc_pipe_callback_params_t

class sc_pipe_callback_params_t(ctypes.Structure):
fields = [("callbacks", ctypes.POINTER(sc_pipe_callbacks))]

class scTDC.sc_pipe_buf_callbacks_params_t

class sc_pipe_buf_callbacks_params_t(ctypes.Structure):

fields = [("priv", ctypes.POINTER (None)),
("data", CB_BUFDATA_DATA),
("end_of_measurement", CB_BUFDATA_END_OF_MEAS),
("data_field_selection", ctypes.c_uint),
("max_buffered_data_len", ctypes.c_uint),
("dld_events", ctypes.c_int),
("version", ctypes.c_int),
("reserved", ctypes.c_ubyte * 24)]

10 Chapter 3

. APl reference

scTDC Python SDK, Release 1.4.0

3.1.3 Types returned when reading pipes (or getting callbacks from pipes):

class scTDC.statistics_t

class statistics_t(ctypes.Structure):

fields = [("counts_read", ctypes.c_uint *
("counts_received", ctypes.c_uint *
("events_found", ctypes.c_uint *
("events_in_roi", ctypes.c_uint
("events_received", ctypes.c_uint
("counters", ctypes.c_uint
("reserved", ctypes.c_uint *

64),
64),
4,
4,
oy
* 643,

52)]

class scTDC.tdc_event_t

class tdc_event_t(ctypes.Structure):
ctypes.c_uint),
ctypes.c_uint),
ctypes.c_ulonglong),
ctypes.c_ulonglong),
ctypes.c_ulonglong),
ctypes.c_ulonglong)]

fields = [("subdevice",
("channel",
("start_counter",
("time_tag",
("time_data",
("sign_counter",

class scTDC.dld_event_t

class dld_event_t(ctypes.Structure):

fields = [("start_counter",
("time_tag",
("subdevice",
("channel",
("sum",

("dif1i",
("dif2",

("master_rst_counter",

("adc",
("signallbit",

ctypes.c_ulonglong),
ctypes.c_ulonglong),
ctypes.c_uint),
ctypes.c_uint),
ctypes.c_ulonglong),
ctypes.c_ushort),
ctypes.c_ushort),
ctypes.c_uint),
ctypes.c_ushort),
ctypes.c_ushort)]

class scTDC.sc_pipe_buf_callback_args

class sc_pipe_buf_callback_args(ctypes.Structure):

fields = [("event_index",
("som_indices",
("ms_indices",

("subdevice",

("channel",
("start_counter",
("time_tag",
("dif1i",

("dif2",

("time",

("master_rst_counter",

("adc",
("signallbit",

ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes
ctypes

.c_ulonglong),

.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.
.POINTER(ctypes.

c_ulonglong)),
c_ulonglong)),
c_uint)),
c_uint)),
c_ulonglong)),
c_uint)),
c_uint)),
c_uint)),
c_ulonglong)),
c_uint)),
c_int)),
c_ushort)),

(continues on next page)

3.1. class scTDClib

11

scTDC Python SDK, Release 1.4.0

(continued from previous page)

("som_indices_len", ctypes.c_uint),
("ms_indices_len", ctypes.c_uint),
("data_len", ctypes.c_uint),
("reserved", ctypes.c_char * 12)]

3.2 class Device

class scTDC.Device (inifilepath="tdc_gpx3.ini', autoinit=True, lib=None)

A higher-level interface for TDCs and DLDs for applications that use pre-computed histograms from the scTDC
library.

__init__ (inifilepath="tdc_gpx3.ini', autoinit=True, lib=None)
Creates a device object.

Parameters

e inifilepath (str, optional) — the name of or full path to the configuration/ini file,
defaults to “tdc_gpx3.ini”

e autoinit (bool, optional) — if True, initialize the hardware immediately, defaults to
True

e 1ib (scTDClib, optional) — if not None, reuse the specified scTDClib object, else the
Device class creates its own scTDClib object internally, defaults to None

initialize(Q)
Initialize the hardware.

Returns a tuple containing an error code and a human-readable error message (zero and empty
string in case of success)

Return type tuple(int, str)

deinitialize()
Deinitialize the hardware.

Returns a tuple containing an error code and a human-readable error message (zero and empty
string in case of success)

Return type tuple(int, str)
is_initialized()
Query whether the device is initialized
Returns True if the device is initialized
Return type bool

do_measurement (time_ms=100, synchronous=False)

Start a measurement.
Parameters
e time_ms (int, optional) - the measurement time in milliseconds, defaults to 100

¢ synchronous (bool, optional) — if True, block until the measurement has finished.
defaults to False.

12 Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

Returns a tuple (0, “”) in case of success, or a negative error code and a string with the error
message

Return type tuple(int, str)

interrupt_measurement ()

Interrupt a measurement that was started with synchronous=False.

Returns a tuple (0, “”) in case of success, or a negative error code and a string with the error
message

Return type tuple(int, str)

add_end_of_measurement_callback(cb)

Adds a callback function for the end of measurement. The callback function needs to accept one int
argument which indicates the reason for the callback. Notification via callback is useful if you want to
use do_measurement(...) with synchronous=False, for example in GUISs that need to be responsive during
measurement.

Parameters cb (Callable) — the callback function
Returns non-negative ID of the callback (for later removal)
Return type int

remove_end_of_measurement_callback(id_of cb)

Removes a previously added callback function for the end of measurement.

Parameters id_of_cb (int) - the ID as previously returned by
add_end_of_measurement_callback.

Returns 0 on success, -1 if the id_of_cb is unknown
Return type int

add_3d_pipe (depth, modulo, binning, roi)

Adds a 3D pipe (x, y, time) with static buffer. The 3D buffer retrieved upon reading is organized such that
a point (x, y, time_slice) is addressed by x + y * size_x + time_slice * size_x * size_y. When getting a
numpy array view/copy of the buffer, the ‘F’ (Fortran) indexing order can be chosen, such that the indices
are intuitively ordered as x, y, time.

Parameters
¢ depth (int) — one of BS8, BS16, BS32, BS64, BS_FLOAT32, BS_FLOAT64

¢ modulo (int) - If 0, no effect. If > 0, a module operation is applied to the time values of
events before sorting events into the 3D buffer. The unit of the module value is the time
bin divided by 32, i.e. a modulo value of 32 corresponds to one time bin.

e binning ((int, int, int)) — a 3-tuple specifying the binning in x, y, and time, where all
values need to be a power of 2.

e roi (((int, int), (int, int), (int, int))) — a 3-tuple of (offset, size) pairs
specifying the ranges along the X, y, and time axes.

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)

3.2.

class Device 13

scTDC Python SDK, Release 1.4.0

add_xy_pipe (depth, modulo, binning, roi)

Adds a 2D pipe (x,y) with static buffer. The 2D buffer retrieved upon reading is organized such that a point
(x,y) is addressed by x + y * size_x. When getting a numpy array view/copy of the buffer, the ‘F’ (Fortran)
indexing order can be chosen, such that the indices are intuitively ordered X, y. The binning in time has an
influence only on the time units in the roi. The time part in the roi specifies the integration range, such that
only events inside this time range are inserted into the data buffer.

Parameters
e depth (int) — one of BS8, BS16, BS32, BS64, BS_FLOAT32, BS_FLOAT64

e modulo (int) — If 0, no effect. If > 0, a module operation is applied to the time values of
events before sorting events into the 2D buffer. The unit of the module value is the time
bin divided by 32, i.e. a modulo value of 32 corresponds to one time bin.

* binning ((int,int, int)) — a 3-tuple specifying the binning in x, y, and time, where all
values need to be a power of 2.

e roi (((int, int), (int, int), (int, int))) — a 3-tuple of (offset, size) pairs
specifying the ranges along the x, y, and time axes.

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)
add_xt_pipe (depth, modulo, binning, roi)

Adds a 2D pipe (x,t) with static buffer. The 2D buffer retrieved upon reading is organized such that a point
(x,time) is addressed by x + time * size_x. When getting a numpy array view/copy of the buffer, the ‘F’
(Fortran) indexing order can be chosen, such that the indices are intuitively ordered x, time. The binning
in y has an influence only on the y units in the roi. The y part in the roi specifies the integration range, such
that only events inside this y range are inserted into the data buffer.

Parameters
¢ depth (int) — one of BS8, BS16, BS32, BS64, BS_FLOAT32, BS_FLOAT64

e modulo (int) - If 0, no effect. If > 0, a module operation is applied to the time values of
events before sorting events into the 2D buffer. The unit of the module value is the time
bin divided by 32, i.e. a modulo value of 32 corresponds to one time bin.

e binning ((int, int, int)) — a 3-tuple specifying the binning in x, y, and time, where all
values need to be a power of 2.

e roi (((int, int), (int, int), (int, int))) — a 3-tuple of (offset, size) pairs
specifying the ranges along the x, y, and time axes.

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)

add_yt_pipe (depth, modulo, binning, roi)

Adds a 2D pipe (y,t) with static buffer. The 2D buffer retrieved upon reading is organized such that a point
(y,time) is addressed by y + time * size_y. When getting a numpy array view/copy of the buffer, the ‘F’
(Fortran) indexing order can be chosen, such that the indices are intuitively ordered y, time. The binning in
x has an influence only on the x units in the roi. The x part in the roi specifies the integration range, such
that only events inside this x range are inserted into the data buffer.

Parameters

* depth (int) — one of BS8, BS16, BS32, BS64, BS_FLOAT32, BS_FLOAT64

14 Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

* modulo (int) — If 0, no effect. If > 0, a module operation is applied to the time values of
events before sorting events into the 2D buffer. The unit of the module value is the time
bin divided by 32, i.e. a modulo value of 32 corresponds to one time bin.

e binning ((int, int, int)) — a 3-tuple specifying the binning in x, y, and time, where all
values need to be a power of 2.

e roi (((int, int), (int, int), (int, int))) — a 3-tuple of (offset, size) pairs
specifying the ranges along the x, y, and time axes.

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)
add_t_pipe (depth, modulo, binning, roi)

Adds a 1D time histogram pipe, integrated over a rectangular region in the (x,y) plane (for delay-line de-
tectors) with static buffer. The buffer received upon reading is a 1D array of the intensity values for all
resolved time bins. The binning in x and y has an influence only on the x and y units in the roi. The x and

y parts in the roi specify the integration ranges, such that only events inside the x and y ranges are inserted
into the data buffer.

Parameters
¢ depth (int) — one of BS8, BS16, BS32, BS64, BS_FLOAT32, BS_FLOAT64

e modulo (int) — If 0, no effect. If > 0, a module operation is applied to the time values of
events before sorting events into the 1D array. The unit of the module value is the time bin
divided by 32, i.e. a modulo value of 32 corresponds to one time bin.

e binning ((int, int, int)) — a 3-tuple specifying the binning in x, y, and time, where all
values need to be a power of 2.

e roi (((int, int), (int, int), (int, int))) — a 3-tuple of (offset, size) pairs
specifying the ranges along the x, y, and time axes.

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)
add_statistics_pipe()

Adds a pipe for statistics data (sometimes referred to as rate meters). The statistics data is only updated at
the end of each measurement.

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)
add_tdc_histo_pipe (depth, channel, modulo, binning, offset, size)

Adds a pipe for time histograms from a stand-alone TDC. TDC events are filtered by the specified channel,
and their time values are transformed first by modulo, then by binning, then by subtraction of the offset, and

finally, by clipping to the size value. The resulting value (if not clipped) is the array index of the histogram
which is incremented by one.

Parameters
¢ depth (int) — one of BS8, BS16, BS32, BS64

¢ channel (int) — selects the TDC channel

. class Device 15

scTDC Python SDK, Release 1.4.0

* modulo (int) — If 0, no effect. If > 0, a modulo operation is applied to the time values of
TDC events before sorting them into the 1D array. The unit of the module value is the time
bin divided by 32, i.e. a modulo value of 32 corresponds to one time bin.

e binning (int) — divides the time value by the specified binning before sorting into the 1D
array. Must be a power of 2. Binning 1 is equivalent to no binning.

» offset (int) — The offset / lower boundary of the accepted range on the time axis.

e size (int) — The size / length of the accepted range on the time axis. The size is also
directly the number of entries in the array/histogram

Returns a tuple containing a non-negative pipe ID and the Pipe object in case of success. A tuple
containing the negative error code and the error message in case of failure.

Return type tuple(int, Pipe) | tuple(int, str)
remove_pipe (pipeid)

Remove a pipe. Manual removal of pipes may be unnecessary if you are using all created pipes until the
deinitialization of the device.

Parameters pipeid (int) — the pipe ID as returned in the first element of the tuple by all
add_XYZ_pipe functions

Returns 0 on success, -1 if pipe id unknown or error

Return type int

3.2.1 Pixel/Voxel data type constants

scTDC.BS8 = 0
pixel data format, unsigned 8-bit integer
scTDC.BS16 = 1
pixel data format, unsigned 16-bit integer
scTDC.BS32 = 2
pixel data format, unsigned 32-bit integer
scTDC.BS64 = 3
pixel data format, unsigned 64-bit integer
scTDC.BS_FLOAT32 = 4
pixel data format, single-precision floating point number

scTDC.BS_FLOAT64 = 5

pixel data format, double-precision floating point number

3.3 class Pipe

class scTDC.Pipe (typestr, par, parent)

This class handles various types of data received from scTDC library pipes, such as
* 1D, 2D, 3D histograms from DLD (detected particle) events
* statistics data at the end of measurements

e time histograms from stand-alone TDCs.

16 Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

Instantiation of this class should only happen through calls to the add_XYZ_pipe functions from the Device
class. Use methods of this class to access the data produced by the Pipe.

__init__ (typestr, par, parent)
Constructs a Pipe object. Creates the data buffer and opens the pipe in the scTDC library for the parent

Device.
Parameters
* typestr (str)—one of ‘3d’, ‘xy’, ‘xt’, ‘yt’, ‘t’, ‘stat’
e par (sc_pipe_dld_image_xyt_params_t [sc_pipe_statistics_params_t) -
pipe configuration parameters
e parent (Device)—a Device object
is_open()

Query whether the pipe is active / open.

Returns True, if the pipe is active in the scTDC library (if so, the library writes to the data buffer
during measurements and increments histogram entries on incoming events).

Return type bool

reopen (force=Fualse)
Open a pipe with previous parameters, if not currently open.
Parameters force (bool, optional) — set this to True, if the pipe has not been explicitly
closed, but the device was deinitialized, causing an implicit destruction of the pipe (implicit

desctruction only happens through low-level API calls, whereas Device.deinitialize will close
all pipe objects and delete references to them), defaults to False

Returns None if nothing to do, (0, “”’) on success, (error code, message) on failure
Return type None | (int, str)

close()

Close the pipe such that no events are sorted into the data buffer anymore. The data buffer remains un-
changed. In that sense, closing acts more like setting the pipe inactive the pipe can be reopened later. The
data buffer can only be garbage-collected after deleting the pipe object via the parent device and discarding
all other references to the Pipe object.

Returns (0, *”) if success, (error code, message) on failure
Return type (int, str)

get_buffer_view()

For 1D, 2D, 3D pipes, get a numpy array of the data buffer, constructed without copying. As a consequence,
changes to the data buffer, made by the scTDC library after getting the buffer view, will be visible to the
numpy array returned from this function. The indexing is in Fortran order, i.e. X, y, time. If the pipe is a
statistics pipe, get the statistics_t object which may be modified subsequently by the scTDC.

Returns a view of the static data buffer
Return type numpy.ndarray | statistics_t

get_buffer_copy()

For 1D, 2D, 3D pipes, get a numpy array of a copy of the data buffer. The indexing is in Fortran order, i.e.
X, y, time. If the pipe is a statistics pipe, return a copy of the statistics_t object.

Returns a copy of the data buffer

Return type numpy.ndarray | statistics_t

3.3.

class Pipe 17

scTDC Python SDK, Release 1.4.0

clear()

Set all voxels of the data buffer to zero

3.4 class buffered_data_callbacks_pipe

class scTDC.buffered_data_callbacks_pipe(/ib, dev_desc, data_field_selection=64,

Base class for using the BUFFERED_DATA_CALLBACKS interface which provides DLD or TDC events in a list-
of-events form. Requires scTDCI library version >= 1.3010.0. In comparison to the USER_CALLBACKS pipe,
this pipe reduces the number of callbacks into python, buffering a higher number of events within the library
before invoking the callbacks. Thereby, the number of Python lines of code that need to be executed can be
drastically reduced if you stick to numpy vector operations rather than iterating through the events one by one.
The on_data callback receives a dictionary containing 1D numpy arrays where the size of these arrays can be as
large as specified by the max_buffered_data_len parameter. To use this interface, write a class that derives from

max_buffered_data_len=65536, dld_events=True)

this class and override the methods

e on_data

e on_end_of_meas

__init__(lib, dev_desc, data_field_selection=64, max_buffered_data_len=65536, dld_events=True)

Creates the pipe which will be immediately active until closed. Requires an already initialized device.

Parameters

on_data(data)

1ib (scTDClib) —an scTDC1lib object

dev_desc (int) — device descriptor as returned by sc_tdc_init_inifile or
sc_tdc_init_inifile_overrides

data_field_selection (int) — a ‘bitwise or’ combination of SC_DATA_FIELD_xyz
constants, defaults to SC_DATA_FIELD_TIME

max_buffered_data_len (int) - The number of events that are buffered before invoking
the on_data callback. Less events can also be received in the on_data callback, when the
user chooses to return True from the on_end_of_meas callback. defaults to (1<<16)

dld_events (bool) —if True, receive DLD events. If False, receive TDC events. Depend-
ing on the configuration in the tdc_gpx3.ini file, only one type of events may be available.
defaults to True

Override this method to process the data.

Parameters data — A dictionary containing several numpy arrays. The selection of arrays de-
pends on the data_field_selection value used during initialization of the class. The following
key names are always present in this dictionary:

event_index

data_len

Keywords related to regular event data are:

subdevice
channel

start_counter

18

Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

* time_tag

o difl

e dif2

¢ time

* master_rst_counter

e adc

* signallbit

Keywords related to indexing arrays are:

e som_indices (start of a measurement)

* ms_indices (millisecond tick as tracked by the hardware)

These contain event indices that mark the occurence of what is described in parentheses in
the above list.

Returns None

on_end_of_meas()
Override this method to trigger actions at the end of the measurement. Do not call methods that start the
next measurement from this callback. This cannot succeed. Use a signalling mechanism into your main
thread, instead.

Returns True indicates that the pipe should transfer the remaining buffered events immediately
after returning from this callback. False indicates that the pipe may continue buffering the
next measurements until the max_buffered_data_len threshold is reached.

Return type bool

close()
Close the pipe.

start_measurement_sync (time_ms)

Start a measurement and wait until it is finished.
Parameters time_ms (int) — the duration of the measurement in milliseconds.
Returns 0 on success or a negative error code.
Return type int

start_measurement (time_ms, retries=3)

Start a measurement ‘in the background’, i.e. don’t wait for it to finish.
Parameters
e time_ms (int) — the duration of the measurement in milliseconds.

e retries (int)-in an asynchronous scheme of measurement sequences, trying to start the
next measurement can occasionally result in a “NOT READY” error. Often some thread of
the scTDC1 library just needs a few more cycles to reach the “idle” state again, where the
start of the next measurement will be accepted. The retries parameter specifies how many
retries with 0.001 s sleeps in between will be made before giving up, defaults to 3

Returns 0 on success or a negative error code.

Return type int

3.4.

class buffered_data_callbacks_pipe 19

scTDC Python SDK, Release 1.4.0

scTDC.SC_DATA_FIELD_SUBDEVICE = 1
used in buffered_data_callbacks_pipe

scTDC.SC_DATA_FIELD_CHANNEL = 2

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_START_COUNTER = 4

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_TIME_TAG = 8

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_DIF1 = 16

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_DIF2 = 32

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_TIME = 64

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_MASTER_RST_COUNTER = 128

used in buffered_data_callbacks_pipe
scTDC.SC_DATA_FIELD_ADC = 256

used in buffered_data_callbacks_pipe

scTDC.SC_DATA_FIELD_SIGNAL1BIT = 512
used in buffered_data_callbacks_pipe

3.5 class usercallbacks_pipe

class scTDC.usercallbacks_pipe(lib, dev_desc)

Base class for user implementations of the “USER_CALLBACKS” interface. Derive from this class and override

some or all of the methods
e on_start_of_meas
¢ on_end_of meas
¢ on_millisecond
* on_statistics
e on_tdc_event

¢ on_dld_event

The lib argument in the constructor expects a scTDCIlib object. The dev_desc argument in the constructor expects

the device descriptor as returned by sc_tdc_init_inifile(...).

__init__(lib, dev_desc)

20

Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

3.6 class Camera

class scTDC.Camera (inifilepath="tdc_gpx3.ini', autoinit=True, lib=None)

Bases: scTDC.Device
A specialization of the Device class that offers additional, camera-specific functions

add_frame_pipe()

Add a CamFramePipe pipe for receiving meta data and image data for individual camera frames.

Returns a tuple containing a pipe ID and the CamFramePipe object if successful; a tuple con-
taining the error code and an error message in case of failure.

Return type (int, CamFramePipe) | (int, str)
add_blobs_pipe()

Add a CamBlobsPipe for receiving blob data for individual camera frames.

Returns a tuple containing a pipe ID and the CamBlobsPipe object if successful; a tuple con-
taining the error code and an error message in case of failure.

Return type (int, CamBlobsPipe) | (int, str)

set_exposure_and_frames (exposure, nrframes)

Set the exposure per frame in microseconds and the number of frames
Parameters
* exposure (int) — the exposure per frame in microseconds
e nrframes (int) — the number of frames
Returns (0, “”’) on success or a tuple with negative error code and error message
Return type (int, str)

get_max_size()

Get the maximum possible width and height for regions of interest (the width and height in pixels of the
Sensor area).

Returns a tuple (0, roi) where roi is a dictionary with keys ‘width’ and ‘height’ if successful, a
tuple (error_code, error_message) in case of failure

Return type (int, dict) | (int, str)

set_region_of_interest (xmin, xmax, ymin, ymax)

Set the region of interest.
Parameters
e xmin (int) — the position of the boundary to the left
e xmax (int) — the position of the boundary to the right
e ymin (int) — the position of the top boundary
» ymax (int) — the position of the bottom boundary

132

Returns atuple (0,
message

) in case of success, or a tuple containing a negative error code and an error

Return type (int, str)

3.6. class Camera 21

scTDC Python SDK, Release 1.4.0

get_region_of_interest()

Get the currently set region of interest

Returns a tuple (0, roi) where roi is a dict with keywords ‘xmin’, ‘xmax’, ‘ymin’, ‘ymax’ if
successful, a tuple containing error code and error message in case of failure

Return type (int, dict) | (int, str)
set_fanspeed (fanspeed)
Set the fan speed
Parameters fanspeed (int) - the fan speed on a scale from O (off) to 255 (maximum)
Returns (0, *”) if successful; (error_code, error_message) in case of failure
Return type (int, str)
set_blob_mode (blob_dif_min_top=1, blob_dif_min_bottom=3)

Activate blob mode. Refer to https://www.surface-concept.com/sctdc-sdk-doc/05_reconflex_cameras.
html#blob-recognition-criteria, (condition 3 + 4) for explanation of the blob_dif min_top/bottom param-
eters.

Parameters
e blob_dif min_top (int) — allowed values range from 0 to 63
* blob_dif min bottom (int) — allowed values range from O to 63
Returns (0, ©”) if successful; (error_code, error_message) in case of failure
Return type (int, str)
set_image_mode()
Deactivate blob mode.
set_smoother_masks_square(sizel/=1, size2=1)

Set the smoother pixel masks to filled squares of specified sizes. Specifying both sizes as 1 results in no
smoothing. Allowed values for each of the size parameters are 1, 2, 3, 4, 5.

set_smoother_bit_shifts(shift/=0, shift2=0)

Set the smoother bit shifts applied to the intensity value after convolution with the smoother pixel
mask after smoothing stages 1 and 2, respectively. Recommended shifts for square sizes used in
set_smoother_masks_square are shift O for size 1, shift 2 for size 2, shift 3 for size 3, shift 4 for size 4,
shift 4 or 5 for size 5.

set_analog_gain(value)

Set the analog gain (a property of the sensor)
Parameters value (int) — the analog gain value ranging from 0 to 480
Returns (0, “’) in case of success; (error_code, error_message) in case of failure
Return type (int, str)

get_analog_gain()

Get the currently set analog gain (a property of the sensor)

Returns A tuple (0, analog_gain) if successful; a tuple (error_code, error_message) in case of
failure

Return type (int, int) | (int, str)

22 Chapter 3. API reference

https://www.surface-concept.com/sctdc-sdk-doc/05_reconflex_cameras.html#blob-recognition-criteria
https://www.surface-concept.com/sctdc-sdk-doc/05_reconflex_cameras.html#blob-recognition-criteria

scTDC Python SDK, Release 1.4.0

set_black_offset (value)
Set the black offset (a property of the sensor)

Parameters value (int) — the black offset value ranging from 0 to 255 (in BitMode 8) or from
0 to 4095 (in BitMode 12).

Returns (0, “) in case of success; (error_code, error_message) in case of failure
Return type (int, str)

get_black_offset()
Get the currently set black offset (a property of the sensor)

Returns A tuple (0, black_offset) if successful; a tuple (error_code, error_message) in case of
failure

Return type (int, int) | (int, str)

set_white_pixel_min(value)

Set the “White Pixel Min’ parameter, a threshold criterion for filtering white pixels.

Parameters value (int) — the white pixel minimum value ranging from 0 to 255. 0 turns white
pixel remover off. 1 is the lowest threshold (removes the most white pixels).

Returns (0, “) in case of success; (error_code, error_message) in case of failure
Return type (int, str)

get_white_pixel_min()

Get the current value of the “White Pixel Min’ parameter

Returns A tuple (0, white_pixel_min) if successful; a tuple (error_code, error_message) in case
of failure

Return type (int, int) | (int, str)

set_white_pixel_relax(value)

Set the “White Pixel Relax’ parameter, which controls a ratio between the center pixel and its horizontal
and vertical neighbours such that if the ratio is exceeded, the center pixel is considered as a white pixel

Parameters value (int) — the white pixel relax value, one of 0, 1, 2, 3.

 white pixel relax == 0 : ratio 2;

* white pixel relax == 1 : ratio 1.5;

 white pixel relax == 2 : ratio 1.25;

* white pixel relax == 3 : ratio 1;
Returns (0, “) in case of success; (error_code, error_message) in case of failure
Return type (int, str)

get_white_pixel_relax()

Get the current value of the “White Pixel Relax’ parameter

Returns A tuple (0, white_pixel_relax) if successful; a tuple (error_code, error_message) in case
of failure

Return type (int, int) | (int, str)

3.6.

class Camera 23

scTDC Python SDK, Release 1.4.0

set_shutter_mode (value)
Set the shutter mode

Parameters value (int) — one of the values defined in the ShutterMode class
Returns (0, “) in case of success; (error_code, error_message) in case of failure
Return type (int, str)

get_shutter_mode()

Get the currently active shutter mode

Returns A tuple (0, shutter_mode) if successful; a tuple (error_code, error_message) in case of
failure. The shutter mode value is one of the constants defined in the ShutterMode class

Return type (int, int) | (int, str)
class scTDC.ShutterMode

Defines the values that represent the available shutter modes

START_AND_STOP_BY_WIRE = 0
START_AND_STOP_BY_SOFTWARE = 1

START_BY_WIRE_STOP_BY_SOFTWARE

1}
N

START_BY_SOFTWARE_STOP_BY_WIRE

1}
w

3.7 class CamFramePipe

class scTDC.CamFramePipe (device)

A pipe for reading camera image frames and frame meta information synchronously. Do not instantiate this class
by hand. Use Camera.add_frame_pipe, instead.

is_active()
Query whether the pipe is active / open.
Returns True if the pipe is active.
Return type bool
close()
Close the pipe, release memory associated with the pipe

read (timeout_ms=500)

Wait until the next camera frame becomes available or timeout is reached. Return meta data and, if available,
image data of the next camera frame. If image data is returned, access to it is only allowed until the next
time that this read function is called. Perform a copy of the image data if you need to keep it for longer. As
soon as a CamFramePipe is opened and measurements are started, the pipe allocates memory for storing the
frame data until this frame data is read. Not reading the pipe frequently enough can exhaust the memory.

Parameters timeout_ms (int, optional) - the timeout in milliseconds, defaults to 500

Returns Returns a tuple (meta, image_data) where meta is a dictionary containing the frame
meta data, and image_data is a numpy array. If an error occurs, returns a tuple (error_code,
error_message).

Return type (dict, numpy.ndarray) | (int, str)

24 Chapter 3. API reference

scTDC Python SDK, Release 1.4.0

3.8 class CamBlobsPipe

class scTDC.CamBlobsPipe (device)

A pipe for reading camera blob data synchronously. Do not instantiate this class by hand. Use Cam-
era.add_blobs_pipe, instead.

is_active()
Query whether the pipe is active / open.
Returns True if the pipe is active.
Return type bool
close()
Close the pipe, release memory associated with the pipe
read (timeout_ms=500)

Wait until blob data for the next camera frame becomes available or timeout is reached and read it. Returns
blob data of the next camera frame. If data is returned, access is only allowed until the next time that
this read function is called. Perform a copy of the data if you need to keep it for longer. As soon as a
CamBlobsPipe is opened and measurements are started, the pipe allocates memory for storing data which
is released by reading. Not reading the pipe frequently enough can exhaust the memory.

Parameters timeout_ms (int, optional) — the timeout in milliseconds, defaults to 500

Returns Returns an array of blob positions in case of success. If an error occurs, returns a tuple
(error_code, error_message).

Return type numpy.ndarray | (int, str)

3.8. class CamBlobsPipe 25

scTDC Python SDK, Release 1.4.0

26 Chapter 3. API reference

CHAPTER
FOUR

INDICES AND TABLES

* genindex
* modindex

¢ search

27

scTDC Python SDK, Release 1.4.0

28 Chapter 4. Indices and tables

Symbols

__init__Q (scTDC.Device method), 12

__init__Q (scTDC.Pipe method), 17

__init__Q (scTDC.buffered_data_callbacks_pipe
method), 18

__init__Q (scTDC.scTDClib method), 5

__init__Q (scTDC.usercallbacks_pipe method), 20

A

add_3d_pipe(Q (scTDC.Device method), 13
add_blobs_pipe() (scTDC.Camera method), 21
add_end_of_measurement_callback()
(scTDC.Device method), 13
add_frame_pipe () (scTDC.Camera method), 21
add_statistics_pipe() (scTDC.Device method), 15
add_t_pipe(Q (scTDC.Device method), 15
add_tdc_histo_pipe() (scTDC.Device method), 15
add_xt_pipe() (scTDC.Device method), 14
add_xy_pipe () (scTDC.Device method), 13
add_yt_pipe() (scTDC.Device method), 14

B

BS16 (in module scTDC), 16

BS32 (in module scTDC), 16

BS64 (in module scTDC), 16

BS8 (in module scTDC), 16

BS_FLOAT32 (in module scTDC), 16

BS_FLOAT64 (in module scTDC), 16
BUFFERED_DATA_CALLBACKS (in module scTDC), 8
buffered_data_callbacks_pipe (classin scTDC), 18

C

CamBlobsPipe (class in scTDC), 25

Camera (class in scTDC), 21

CamFramePipe (class in scTDC), 24

clear() (scTDC.Pipe method), 17

close () (scTDC.buffered_data_callbacks_pipe method),
19

close() (scTDC.CamBlobsPipe method), 25

close() (scTDC.CamFramePipe method), 24

close() (scTDC.Pipe method), 17

INDEX

D

deinitialize() (scTDC.Device method), 12
Device (class in scTDC), 12

dld_event_t (class in scTDC), 11
DLD_IMAGE_3D (in module scTDC), 8
DLD_IMAGE_XT (in module scTDC), 8
DLD_IMAGE_XY (in module scTDC), 8
DLD_IMAGE_YT (in module scTDC), 8
DLD_SUM_HISTO (in module scTDC), 8
do_measurement () (scTDC.Device method), 12

G

get_analog_gain(Q) (scTDC.Camera method), 22
get_black_offset() (scTDC.Camera method), 23
get_buffer_copy() (scTDC.Pipe method), 17
get_buffer_view() (scTDC.Pipe method), 17
get_max_size() (scTDC.Camera method), 21
get_region_of_interest() (scTDC.Camera
method), 21
get_shutter_mode () (scTDC.Camera method), 24
get_white_pixel_min() (scTDC.Camera method), 23
get_white_pixel_relax() (scTDC.Camera method),
23

initialize () (scTDC.Device method), 12

interrupt_measurement() (scTDC.Device method),
13

is_active() (scTDC.CamBlobsPipe method), 25

is_active(Q) (scTDC.CamFramePipe method), 24

is_initialized() (scTDC.Device method), 12

is_open(Q) (scTDC.Pipe method), 17

O

on_data() (scTDC.buffered_data_callbacks_pipe
method), 18

on_end_of_meas () (scTDC.buffered_data_callbacks_pipe

method), 19

P

Pipe (class in scTDC), 16
PIPE_CAM_BLOBS (in module scTDC), 9

29

scTDC Python SDK, Release 1.4.0

PIPE_CAM_FRAMES (in module scTDC), 8

R

read() (scTDC.CamBlobsPipe method), 25

read() (scTDC.CamFramePipe method), 24

remove_end_of_measurement_callback()
(scTDC.Device method), 13

remove_pipe() (scTDC.Device method), 16

reopen() (scTDC.Pipe method), 17

roi_t (class in scTDC), 9

S

sc3d_t (class in scTDC), 9
sc3du_t (class in scTDC), 9
SC_DATA_FIELD_ADC (in module scTDC), 20
SC_DATA_FIELD_CHANNEL (in module scTDC), 20
SC_DATA_FIELD_DIF1 (in module scTDC), 20
SC_DATA_FIELD_DIF2 (in module scTDC), 20
SC_DATA_FIELD_MASTER_RST_COUNTER (in
scTDC), 20
SC_DATA_FIELD_SIGNALI1BIT (in module scTDC), 20
SC_DATA_FIELD_START_COUNTER (in module scTDC),
20
SC_DATA_FIELD_SUBDEVICE (in module scTDC), 19
SC_DATA_FIELD_TIME (in module scTDC), 20
SC_DATA_FIELD_TIME_TAG (in module scTDC), 20
sc_get_err_msg() (scTDC.scTDClib method), 6
sc_pipe_buf_callback_args (class in scTDC), 11
sc_pipe_buf_callbacks_params_t (class in scTDC),
10
sc_pipe_callback_params_t (class in scTDC), 10
sc_pipe_callbacks (class in scTDC), 10
sc_pipe_close2() (scTDC.scTDClib method), 7
sc_pipe_dld_image_xyt_params_t (class in scTDC),
9
sc_pipe_open2 () (scTDC.scTDClib method), 7
sc_pipe_read2() (scTDC.scTDClib method), 7
sc_pipe_statistics_params_t (class in scTDC), 9
sc_pipe_tdc_histo_params_t (class in scTDC), 9
sc_tdc_config_get_library_version()
(scTDC.scTDClib method), 6
sc_tdc_deinit2() (scTDC.scTDClib method), 6
sc_tdc_get_statistics2() (scTDC.scTDClib
method), 8
sc_tdc_get_status2() (scTDC.scTDClib method), 8
sc_tdc_init_inifile(Q) (scTDC.scTDClib method), 5
sc_tdc_init_inifile_overrides()
(scTDC.scTDClib method), 5
sc_tdc_interrupt2() (scTDC.scTDClib method), 6
sc_tdc_set_complete_callback2()
(scTDC.scTDClib method), 8
sc_tdc_start_measure2()
method), 6
scTDClib (class in scTDC), 5

module

(scTDC.scTDClib

set_analog_gain() (scTDC.Camera method), 22

set_black_offset() (scTDC.Camera method), 22

set_blob_mode () (scTDC.Camera method), 22

set_exposure_and_frames() (scTDC.Camera
method), 21

set_fanspeed() (scTDC.Camera method), 22

set_image_mode () (scTDC.Camera method), 22

set_region_of_interest() (scTDC.Camera
method), 21

set_shutter_mode () (scTDC.Camera method), 23

set_smoother_bit_shifts() (scTDC.Camera
method), 22

set_smoother_masks_square() (scTDC.Camera
method), 22

set_white_pixel min() (s¢cTDC.Camera method), 23
set_white_pixel_relax() (scTDC.Camera method),
23
ShutterMode (class in scTDC), 24
START_AND_STOP_BY_SOFTWARE (scTDC.ShutterMode
attribute), 24
START_AND_STOP_BY_WIRE
attribute), 24
START_BY_SOFTWARE_STOP_BY_WIRE
(scTDC.ShutterMode attribute), 24
START_BY_WIRE_STOP_BY_SOFTWARE
(scTDC.ShutterMode attribute), 24
start_measurement ()
(scTDC.buffered_data_callbacks_pipe
method), 19
start_measurement_sync()
(scTDC.buffered_data_callbacks_pipe
method), 19
STATISTICS (in module scTDC), 8
statistics_t (class in scTDC), 11

T

tdc_event_t (class in scTDC), 11
TDC_HISTO (in module scTDC), 8

U

USER_CALLBACKS (in module scTDC), 8
usercallbacks_pipe (class in scTDC), 20

(scTDC.ShutterMode

30

Index

	Introduction
	SDK contents
	Prerequisites
	Linux notes

	Python module dependencies

	Examples Overview
	TDC and DLD applications
	Camera applications
	Integration with Qt5 (PyQt5)
	Miscellaneous

	API reference
	class scTDClib
	Pipe type constants
	Data types for type parameters:
	Types returned when reading pipes (or getting callbacks from pipes):

	class Device
	Pixel/Voxel data type constants

	class Pipe
	class buffered_data_callbacks_pipe
	class usercallbacks_pipe
	class Camera
	class CamFramePipe
	class CamBlobsPipe

	Indices and tables
	Index

